VEGETABLES

Сгор	N Application Rates	Sufficient P Level Bicarbonate/Olsen P unless otherwise noted	Sufficient K Level	Information Source
Broccoli	Crop planted cool season ~180-240 lbs/A total application Crop planted warm season ~160-200 lb/A total application 20 ppm nitrate generally sufficient	50 ppm	150 ppm crop removes ~100-140 lbs/A, manage to avoid depletion	State of CA Fertility Guidelines Broccoli http://apps.cdfa.ca.gov/frep/docs/Broccoli.html Broccoli Production in CA UC pub 7211 Broccoli http://anrcatalog.ucdavis.edu/pdf/7211.pdf
Lettuce (Iceberg or Leaf)	150-180 lbs/A for 1st crop of the season; 100-150 lbs/A for following crops 20ppm nitrate generally sufficient	60ppm	150 ppm crop removes ~120 lbs/A, manage to avoid depletion	State of CA Fertility Guidelines for Lettuce http://apps.cdfa.ca.gov/frep/docs/Lettuce.html Iceberg Lettuce Production in CA pub 7215 http://anrcatalog.ucdavis.edu/pdf/7215.pdf

VEGETABLES

Сгор	N Application Rates	Sufficient P Level Bicarbonate/Olsen P unless otherwise noted	Sufficient K Level	Information Source
				Leaf Lettuce Production in CA UC pub 7216 http://anrcatalog.ucdavis.edu/pdf/7216.pdf
Fresh-market Bulb Onions	250 lbs N/A not recommended to apply more than 20-30% preplant	soil P > 30ppm recommended to apply no more than 50 lbs/A P ₂ O ₅	150 ppm	Fresh-Market Bulb Onion Production in CA UC pub 7242 State of CA Fertility Guidelines: http://anrcatalog.ucdavis.edu/pdf/7242.pdf
Spinach	20 lbs/A preplant or at planting; 20-30 lbs/A sidedress once for fresh market, twice for freezer spinach (harvested at greater maturity) 20ppm in top 6" generally sufficient	60ppm	120 ppm fresh market removes ~25-55 lbs/A, manage to avoid depletion	Spinach Production in CA UC pub 7212 http://anrcatalog.ucdavis.edu/pdf/7212.pdf

VEGETABLES

Сгор	N Application Rates	Sufficient P Level Bicarbonate/Olsen P unless otherwise noted	Sufficient K Level	Information Source	
Celery	200-275 lbs/A total generally sufficient, applied throughout the season, with higher rates as the crop matures 20 ppm in top 12" generally sufficient	60 ppm	150 ppm, crop removes ~350- 450 lbs/A, manage to avoid depletion	<u>Celery Production in CA UC pub 7720</u> http://anrcatalog.ucdavis.edu/pdf/7220.pdf	
Processing Tomatoes	100-150 lbs/A for furrow irrigated	20ppm Consider applying to replace P removed with crop. With a yield of 50 tons/acre, approximately 25-35 lbs P/acre are removed with the tomatoes	135-270 ppm depends on what fruit will be used for as quality parameters vary depending on type of processing see guidance in links	State of CA Fertility Guidelines for Processing <u>Tomatoes</u> http://apps.cdfa.ca.gov/frep/docs/Tomato.html <u>Processing Tomato Production in CA UC pub 7228</u> <u>http://anrcatalog.ucdavis.edu/pdf/7228.pdf</u>	

VEGETABLES

Сгор	N Application Rates	Sufficient P Level Bicarbonate/Olsen P unless otherwise noted	Sufficient K Level	Information Source	
Asparagus	1st 2-3 years of establishment ~200 lbs/A after establishment ~100- 150 lbs/A	15ppm may require modest P application, crop removes ~ 50 lbs P/A, manage to avoid depletion	150 ppm, crop removes ~50- 75 lbs/A, manage to avoid depletion	Asparagus Production in CA UC pub 7234 http://anrcatalog.ucdavis.edu/pdf/7234.pdf	
Peppers (Bell)	180-240 lbs/A is normally sufficient	not given	150 ppm	Bell Pepper Production in CA UC pub 7217 http://anrcatalog.ucdavis.edu/pdf/7217.pdf	
Beets and Swiss Chard	150-200 lbs/A	no sufficiency level noted guidance is P>50ppm, apply 50-70 lbs/A	225 ppm	Beets and Swiss Chard Production in CA 8096 pub http://anrcatalog.ucdavis.edu/pdf/8096.pdf	

VEGETABLES

Сгор	N Application Rates	Sufficient P Level Bicarbonate/Olsen P unless otherwise noted	Sufficient K Level	Information Source
Carrots	100-250 lbs N/A usually no response to rates over 150 lbs N/A	30 ppm Olsen P 70 ppm Bray P	200 ppm	Carrot Production in CA UC pub 7226 http://anrcatalog.ucdavis.edu/pdf/7226.pdf

	(Nutrient Budget Work enter information in white cells, grey
1. Identifying Information and Site Charac	teristics	
1.1 Today's Date		
1.2 Field/Ranch Location		
1.3 Irrigation Method		
1.4 Planned Crop		
1.5 Expected Yield (include units)		
1.6 Planting Date for Planned Crop		
1.7 Soil type and texture		
2. Nutrients Available		
2.1 Soil Test Results (date of test)		
2.1.1 Nitrate-N ppm		ppm N * 4 is estimate of lbs/A
2.1.2 P ppm		pH equal/greater than 6.0 use Olsen
2.1.3 K ppm		Usually listed as NH ₄ OAc K
2.1.4 % SOM and expected N release		See assumptions and calculation
2.2 Irrigation Water Test (date of test)		
2.2.1 Irrigation Water NO ₃ -N (ppm)		See notes in guidance if test give
2.2.2 Acre inches water applied		See notes in guidance if not kno
· ·		ppm NO ₃ ⁻ -N*0.227=lbs N/acre inch,
2.2.3 lbs N/A applied with irrigation water		light of actual crop water use, see gu
2.3 Organic soil amendments Date applied:		
2.3.1 N from amendments (lbs/A)		Carry value over from the Nutri
2.3.2 P ₂ O ₅ from amendments (lbs/A)		Carry value over from the Nutri
2.3.3 K ₂ O from amendments (lbs/A)		Carry value over from the Nutri
2.4 N from cover crop Date killed:		
2.4.1 N from cover crop (lbs/A)		Carry value over from N from Co
2.5 Other Describe:		Any other materials that add N, P or
2.5.1 Other N (lbs/A)		
2.5.2 Other P_2O_5 (lbs/A)		
2.5.3 Other K ₂ O (lbs/A)		
3. Nutrient Inputs (summed from above c	alculation	s)
The numbers below should be seen a total ma	ximum pos	sible. It is critical to consider when samples were collected
these values for production management. Act	ual availabi	lity of nutrients depends on many factors. See accompany
management planning.		
3.1 N lbs/A added	#VALUE!	Adjusted value
3.2 P ₂ O ₅ lbs/A added	0	Adjusted value

0

Adjusted value

3.3 K₂O lbs/A added

NOTES AND CONSIDERATIONS:

ksheet

cells calculate values

NOTES

A N to 12 inch depth, gray box calculates; note: nitrate is rapidly leached by rain or irrigation en/Sodium Bicarbonate, pH less than 6.0 use Bray value

on in guidance document, gray box calculates

ives nitrate (NO_3) and not nitrate-nitrogen (NO_3-N)

nown.

n, multiply by acre inches applied for lbs N/A applied with irrigation water, gray box calculates. Note: Consider value in guidance

rients in Organic Amendments Tab

rients in Organic Amendments Tab

rients in Organic Amendments Tab

Cover Crop Tab

or K. Nutrients from fertilizer can be calculated in the **Nutrients from Fertilizer Tab**.

ed, how amendments were managed, irrigation efficiency and many other factors to use ying documentation for factors to consider when using these numbers in nutrient

Nutrient Management Records Sheet

Name			
Crop:			
Field:			
Date	Material applied include analysis for all materials and density if a liquid fertilizer	Rate (Ibs/A, gallons/acre)	Notes

C	Calculating Nitrogen as N, Phosphorus as P_2O_5 and Potassium as K_2O									
	Added with Fertilizer									
	Liquid/ Solid	Guar	ranteed An	alysis				Lbs Applied		
Fertilizer Name	L or S	%N	% P ₂ O ₅	%K ₂ O	Density (if liquid)	Amount applied/A (lbs or gallons)	lbs N	lbs P ₂ O ₅	lbs K ₂ O	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
							0	0	0	
			TOTAL	APPLIE		FERTILIZERS:	0	0	0	

Calculating N, P and K added from Fertilizer

By convention, fertilizer analysis is given in the oxide formation for both phosphorus and potassium. The analysis is typically given as N-P-K, but in fact shows a guaranteed analysis by weight of N, P₂O₅ and K₂O. Thus for example a fertilizer label that reads N-P-K 18-8-13 has the following analysis:

- 18% N $8\% \text{ P}_2\text{O}_5$ $13\% \text{ K}_2\text{O}$ If 250 lbs of this fertilizer is applied this would mean that: 250*0.18 = 45 lbs of N are applied $250*0.08 = 20 \text{ lbs P}_2\text{O}_5 \text{ are applied}$ $250*0.13 = 32.5 \text{ lbs of K}_2\text{O are applied}$
- If the fertilizer is in a liquid formulation, then the calculations must also include consideration of the density of the liquid fertilizer. So using an example with CAN 17 (a liquid fertilizer) with a guaranteed analysis of 17% N, a density of 12.7 lbs/gallon and an application rate of 14 gallons/acre:

Each gallon weighs 12.7 lbs Each pound of product has 17% N, so 12.7 * 0.17 = 2.2 lbs N per gallon

14 gallons has 14 * 2.2 lbs = 30.8 lbs N

Sometimes it is helpful to be able to convert back and forth from the oxide to the element form for P and K. It is easily done with the following conversion

factors: $P * 2.3 = P_2O_5$ and $P_2O_5 * 0.44 = P$ $K * 1.2 = K_2O$ and $K_2O * 0.83 = K$

	NITROGEN ADDED IN COVER CROPS								
En	Enter values for green cells, blue cells are calculated using data you entered. Calculations explained below.								
NOTE: Enter percents	s as whole numbers, for e	xample for 5% enter 5, n	ot 0.05						
Cover Crop Mix % of cover crop that is Estimated height of Estimated lbs of N/acre from cover Name/Code legume (a) crop at kill (b) Estimated biomass at kill (c) crop									
				•					

a) Estimate the percent of the actual cover crop stand that is legume, not simply the percent of seed that was legume.

b) Estimate the height at kill in inches

c) Calculated based on height of crop entered in column C.

Calculations/assumptions as follows:

1. Most non-woody legumes contain roughly 2000 lbs dry matter/acre when they are 6" tall, for each additional inch we assume an additional 150 lbs dry matter/acre.

2. Legumes cut before flowering have ~3.5-4% N, after flowering ~3-3.5% N in above ground growth (with younger material at the high end). After flowering the N is quickly transferred to the developing seed. Most cover crops are killed before seed set. We assume a value of 3.5% N as an acceptable estimate for the legume component of a cover crop stand.

3. Multiply biomass (in lbs) by % N to estimate lbs N contributed in cover crop.

4. Non-legume cover crops may also release N, but typically have a C:N ratio that minimizes quick availability of N from decomposing material.

Assumptions based on guidance from *Managing Cover Crops Profitably*, edited by Andy Clark.

Sustainable Agriculture Network Handbook Series Book 9, 3rd Edition published 2007 by Sustainable Agriculture Network (SAN). Available for purchase or free download through the SARE website: http://www.sare.org/Learning-Center/Books.

NUTRIENTS ADDED IN ORGANIC AMENDMENTS

BE SURE TO CHOOSE THE CORRECT SECTION!

ANALYSIS BASED ON DRY WEIGHT

Is analysis based on dry weight? If yes, enter the information in the green cells below to calculate estimated N, P and K contributions. If no, enter skip to next section.

NOTE: Enter percents as whole numbers, for example for 5% enter 5, not 0.05

Sample ID	lbs of material applied	% moisture (*)	%N	%P ₂ O ₅	%K₂O	lbs N applied	lbs P ₂ O ₅ applied	lbs K ₂ O applied
						0	0	0
						0	0	0
						0	0	0

* If you have information re: the percent moisture of the materials you actually applied, use this value, if you do not, assume that the product is the same percent moisture as the product that was analyzed.

The calculations are as follows when analysis is based on dry weight:

First calculate what percent of the materials applied are dry matter by multiplying the lbs applied by the percent dry matter. Percent dry matter is calculated by subtracting percent moisture from 100. The calculation is thus:

the dependent independent independent independent in the second contract of the second cont

Lbs dry material applied = lbs applied x (100-% moisture)/100

Then multiply the lbs of dry material applied by the % of the total dry weight that is N.

lbs of each N, P_2O_5 , or $K_2O =$ lbs of dry material applied x (% N, P_2O_5 or $K_2O/100$)

For example, formula in cell G7 is (B7*(100-C7)/100)*(D7/100)

ANALYSIS BASED ON MOIST WEIGHT ("AS RECEIVED")

Is the analysis based on moist or "as received" weight? If yes, enter the information in the green cells below to calcuate estimated N, P and K contributions. If no, return to above section.

NOTE: Enter percents as whole numbers, for example for 5% enter 5, not 0.05

Sample ID	lbs of material applied	%N	%₽₂O₅	%K ₂ O	lbs N applied	lbs P ₂ O ₅ applied	lbs K ₂ O applied
					0	0	0
					0	0	0
					0	0	0

The calculations are as follows when analysis is based on moist weight:

If analysis is based on moist weight, often described "as received", then assuming the moisture content of the applied materials is the same (or similar) to the moisture content of the sample that was analyzed, the calculation does not require a correction for % moisture. Multiply the lbs of moist material applied by the % of the total weight that is N, P_2O_5 or $K_2O/100$ gives lbs of each applied.

Formula in cell G16 is B16*(C16/100)

Fruit Crops

Сгор	N Application Rates	Sufficient P Level	Sufficient K Level	Information Source
Strawberries	about 20 lb N/A taken up from planting until late March, about 1 lb N/A/day for the rest of the season	50 ppm combination of soil test information with tissue test results may be more helpful	200 ppm combination of soil test information with tissue test results may be more helpful	<u>Presentation to 2012 Central Coast Strawberry</u> <u>Meeting by Tim Hartz, UC,</u> <u>http://cesantacruz.ucanr.edu/files/136230.pdf</u>
Caneberries (blackberries, raspberries)	 1st year plantings and floricane bearing varieties: 10 lbs N/A/month from February to end of harvest in fall 2nd year or older primocane-bearing varieties in coastal areas w/long fruiting season: 20 lbs N/A/month 	40 ppm combination of soil test information with tissue test results may be more helpful	200 ppm combination of soil test information with tissue test results may be more helpful	<u>Fresh Market Caneberry Production Manual UC</u> <u>ANR Publication 3525 2012 available for</u> <u>purchase (\$25):</u> <u>http://anrcatalog.ucdavis.edu/Items/3525.aspx</u>
Wine Grapes	COMING SOON! :)			